12,714 research outputs found

    The graphic user interface of the AudioGraph Recorder (PC version) : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    With the popularity of the use of computers and the development of the Internet, many multimedia-authoring systems have been developed for computer-based teaching and learning. This is playing an increasingly important role in education. One authoring system is the AudioGraph project developed at Massey university of N.Z., which have been developed for recording audio-graphic presentation material for publication in an html reference environment, i.e. "on the web". One of the tools in the AudioGraph project is the AudioGraph Recorder, which is a Macintosh application for recording or authoring web-based multimedia presentations. Due to the success of the publication of the AudioGraph application and the need of PC users, an AudioGraph Recorder for the PCs is required. This project is about the porting of the AudioGraph Recorder from the Macintosh platform to the PC platform. First this project report explains the functionality of the AudioGraph Recoder (the Macintosh version), especially how the end users interact with the interface of the AudioGraph Recorder, and the corresponding state changes of the controls in the interface. Then the report compares the development tools used in both platforms. The Macintosh version of the AudioGraph Recorder has been developed with the PowerPlant framework in CodeWarrior environment, but the PC version uses MFC framework in Visual C++ 6.0. This report also describes in detail how the interface of the AudioGraph Recorder application was constructed with the MFC, and implementation of some functionality of the application. At the same time some internals of the MFC framework are discussed

    Anomalous Hall effect in L10-MnAl films with controllable orbital two-channel Kondo effect

    Full text link
    The anomalous Hall effect (AHE) in strongly disordered magnetic systems has been buried in persistent confusion despite its long history. We report the AHE in perpendicularly magnetized L10-MnAl epitaxial films with variable orbital two-channel Kondo (2CK) effect arising from the strong coupling of conduction electrons and the structural disorders of two-level systems. The AHE is observed to excellently scale with pAH/f=a0pxx0+bpxx2 at high temperatures where phonon scattering prevails. In contrast, significant deviation occurs at low temperatures where the orbital 2CK effect becomes important, suggesting a negative AHE contribution. The deviation of the scaling agrees with the orbital 2CK effect in the breakdown temperatures and deviation magnitudes

    Photon-assisted electron transmission resonance through a quantum well with spin-orbit coupling

    Full text link
    Using the effective-mass approximation and Floquet theory, we study the electron transmission over a quantum well in semiconductor heterostructures with Dresselhaus spin-orbit coupling and an applied oscillation field. It is demonstrated by the numerical evaluations that Dresselhaus spin-orbit coupling eliminates the spin degeneracy and leads to the splitting of asymmetric Fano-type resonance peaks in the conductivity. In turn, the splitting of Fano-type resonance induces the spin- polarization-dependent electron-current. The location and line shape of Fano-type resonance can be controlled by adjusting the oscillation frequency and the amplitude of external field as well. These interesting features may be a very useful basis for devising tunable spin filters.Comment: 10pages,4figure

    Genome-wide gene expression surveys and a transcriptome map in chicken

    Get PDF
    The chicken (Gallus gallus) is an important model organism in genetics, developmental biology, immunology, evolutionary research, and agricultural science. The completeness of the draft chicken genome sequence provided new possibilities to study genomic changes during evolution by comparing the chicken genome to that of other species. The development of long oligonucleotide microarrays based on the genome sequence made it possible to survey genome-wide gene expression in chicken. This thesis describes two gene expression surveys across a range of healthy chicken tissues in both adult and embryonic stages. Specifically, we focus on the mechanisms of regulation of gene transcription and their evolution in the vertebrate genome. Chapter 1 provides a brief history of the chicken as a model organism in biological and genomics research. In particular a brief overview is presented about expression profiling experiments, followed by an introduction to gene transcription regulation in general. Finally, the aim and outline of this thesis is presented. An important aim of this thesis is to generate surveys of genome-wide gene expression data in chicken using microarrays. In chapter 2, we introduce microarray data normalization including background correction, within-array normalization and between-array normalization. Based on these results an analysis approach is recommended for the analysis of two-color microarray data as performed in the experiments described in this thesis. We also briefly explain the relevant methodology for the identification of differentially expressed genes and how to translate resulting gene lists into biological knowledge. Finally, specific issues related to updating microarray probe annotation in farm animals, is discussed. For the analysis of the microarray data in this thesis re-annotation of the probes on the chicken 20K oligoarray was done using the oligoRAP, analysis pipeline. The vast amount of data generated from a single transcriptomics study makes it impossible to extract meaningful biological knowledge by manually going through individual genes from a list with hundreds and thousands of differentially expressed genes. In chapter 3, we present a practical approach using a collection of R/Bioconductor packages to extract biological knowledge from a microarray experiment in farm animals. Furthermore, a locally adaptive statistical procedure (LAP) analysis approach is used to identify differentially expressed chromosomal regions in a microarray experiment. Chapter 4 presents a genome-wide gene expression survey across eight different tissues (brain, bursa of Fabricius, kidney, liver, lung, small intestine, spleen, and thymus from 10-week old chickens) in adult birds using a chicken 20K microarray. To a certain extent, most genes show some tissue-specific pattern of expression. Housekeeping and tissue-specific genes are identified based on gene expression patterns across the eight different tissues. The results show that housekeeping genes are more compact, i.e. are smaller, with shorter, coding sequence length, intron length, and smaller length of the intergenic regions. This observed compactness of housekeeping genes may be a result of selection on economy of transcription during evolution. Furthermore, a comparative analysis of gene expression among mouse, chicken, and frog showed that the expression patterns of orthologous genes are conserved during evolution between mammals, birds, and amphibians. The chicken embryo has been a very popular model for developmental biology. To study the overall gene expression pattern in whole chicken embryos at different developmental stages and/or embryonic tissues, a genome-wide gene expression survey across different developmental and embryonic stages was performed (chapter 5). The study included four different developmental stages (HH stage 3, 10, 15, 22) and eight different embryonic tissues (brain, bursa of Fabricius, heart, kidney, liver, lung, small intestine, and spleen from HH stage 36). We were able to identify several embryonic stage- and tissue-specific genes in our analysis. Genomic features of genes widely expressed under these 12 conditions suggest that widely expressed genes are more compact than tissue-specific genes, confirming the findings described in chapter 4. The analysis of the differentially expressed genes during the different developmental stages of whole embryo indicates a gradual change in gene expression during embryo development. A comparison of the gene expression profiles between the same organs, of adults and embryos reveals both striking similarities as well as differences. The overall goal of this thesis was to improve our understanding of the mechanisms of transcriptional regulation in the chicken. In chapter 6, a transcriptome map for all chicken chromosomes is presented based on the expression data described in chapter 4. The results reveal the presence of two distinct types of chromosomal regions characterized by clusters of highly or lowly expressed genes respectively. Furthermore, these regions show a high correlation with a number of genome characteristics, like gene density, gene length, intron length, and GC content. A comparative analysis between the chicken and human transcriptome maps suggests that the regions with clusters of highly expressed genes are relatively conserved between the two genomes. Our results revealed the presence of a higher order organization of the chicken genome that affects gene expression, confirming similar observations in other species. Finally, in chapter 7 I summarize the main findings and discuss some of the limitations of the analyses described in this thesis. I also discuss the different merits and shortcomings of studying gene expression using either microarrays or next-generation sequencing technology and propose directions for future research. The rapid developments in new-generation sequencing technology will facilitate better coverage and depth of the chicken genome. This will provide a better genome assembly and an improved genome annotation. The sequence-based approaches for studying gene expression will reduce noise levels compared to hybridization-based approaches. Overall, next-generation sequencing is already providing greatly enhance tools to further improve our understanding of the chicken transcriptome and its regulation. <br/

    Dynamics of Vibrated Granular Monolayers

    Full text link
    We study statistical properties of vibrated granular monolayers using molecular dynamics simulations. We show that at high excitation strengths, the system is in a gas state, particle motion is isotropic, and the velocity distributions are Gaussian. As the vibration strength is lowered the system's dimensionality is reduced from three to two. Below a critical excitation strength, a gas-cluster phase occurs, and the velocity distribution becomes bimodal. In this phase, the system consists of clusters of immobile particles arranged in close-packed hexagonal arrays, and gas particles whose energy equals the first excited state of an isolated particle on a vibrated plate.Comment: 4 pages, 6 figs, revte
    corecore